Health Effects of Chernobyl in the European Union

Dr. Elif Hindié
Maître de Conférences des Universités- Praticien Hospitalier
Hôpital Saint-Louis
Paris, France
• Although the radioactive fallout was mainly concentrated in the three countries close to the nuclear power plant (Ukraine, Belarus and the Russian Federation), lower concentrations came down over much of the entire Europe.
Land contamination in western Europe

• Initially the wind was blowing in a northwesterly direction and this phase was responsible for much of the deposition in the north of Europe.

• The Swedish nuclear power agency detected an increase in radioactivity and alerted other European countries in 28 April, about 60 hours after the accident had occurred.

• Later the plume shifted to the south-west and much of central Europe, as well as the northern Mediterranean and Balkans, received some deposition.
26 avril 1986
28 avril 1986
2 mai 1986

Bielorussie

Ukraine

Russie
5 mai 1986

Bielorussie

Ukraine

Russie
Land contamination in western Europe

- Local deposition varied largely depending on wind direction, time of arrival of the radioactive plume, terrain features, and the presence and intensity of rainfall during this period.

- The most radiologically important radionuclides detected were 131-I, 132-Te/132-I, 137-Cs and 134-Cs.
Figure XI. Surface ground deposition of caesium-137 released in Europe after the Chernobyl accident [D13].

Total caesium-137 (nuclear weapons test, Chernobyl, ...) deposition

Land contamination in western Europe

- In Austria, Eastern and Southern Switzerland, parts of Southern Germany and Scandinavia, where the passage of the plume coincided with heavy rainfall, the total deposition from the Chernobyl release was high locally (up to and even exceeding 37 Bq/m²). On average, however, it remained 5 – 10 times weaker.

- Further to the west, in Spain and Portugal, the depositions amounted to practically zero (0.02 Bq/m²).

- In France, the depositions showed a gradient from east to west, in decreasing level.

- In Germany, the gradient ran from the south (“hot spots” in Southern Bavaria) to the North.

- In Greece, one of the most contaminated countries, average 137Cs deposition was 6 kBq/m², but with variations from 0.5 to 60 kBq/m².
Table 5
Contaminated areas in European countries following the accident [124]

<table>
<thead>
<tr>
<th>Country</th>
<th>Area in deposition density ranges (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>37–185 kBq m²</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>49 800</td>
</tr>
<tr>
<td>Belarus</td>
<td>29 900</td>
</tr>
<tr>
<td>Ukraine</td>
<td>37 200</td>
</tr>
<tr>
<td>Sweden</td>
<td>12 000</td>
</tr>
<tr>
<td>Finland</td>
<td>11 500</td>
</tr>
<tr>
<td>Austria</td>
<td>8 600</td>
</tr>
<tr>
<td>Norway</td>
<td>5 200</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>4 800</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1 300</td>
</tr>
<tr>
<td>Greece</td>
<td>1 200</td>
</tr>
<tr>
<td>Slovenia</td>
<td>300</td>
</tr>
<tr>
<td>Italy</td>
<td>300</td>
</tr>
<tr>
<td>Republic of Moldova</td>
<td>60</td>
</tr>
</tbody>
</table>

a The 137Cs levels include a small contribution (2–4 kBq m²) from fallout from the atmospheric weapons tests carried out mainly in 1961 and 1962.
Figure VII. Surface ground deposition of caesium-137 in the immediate vicinity of the Chernobyl reactor [11, I24].

The distances of 30 km and 60 km from the nuclear power plant are indicated.
Figure VI. Intensity levels of Cs-137 surface ground depositon.
One should not search for radiation-induced pathologies in Western Europe, that have not declared in heavily contaminated territories of Belarus and Ukraine.
Has there been an increase in the number of voluntary abortion?

The news of spread of radioactivity over Europe generated much anxiety. The real impact of this anxiety among the public is difficult to assess. Some authors reported on a small increase in the number of induced abortions that temporally may have been partially due to fear and misinformation.

Radiation-induced pathologies in residents of contaminated territories of Belarus and Ukraine (excluding Emergency Workers and Liquidators).
Thyroid cancer
Chernobyl Forum

FIG. 3. Incidence rate of thyroid cancer in children and adolescents exposed to 131I as a result of the Chernobyl accident (Jacob et al., 2005).
There have been many post-Chernobyl studies of leukaemia morbidity in the populations of areas contaminated with radionuclides in the three countries. There is no convincing evidence that the incidence of leukaemia has increased in children or adult residents of the exposed populations in Russia and Ukraine.
Other solid cancers

Chernobyl Forum

Because of the generally low doses received, however, there remains a lack of evidence of any measurable effect of Chernobyl radiation exposures on solid cancers in the general population except for childhood thyroid cancer, since higher doses to the thyroid gland were received by children in contaminated areas.
FIG. 4. Prevalence at birth of congenital malformations in 4 oblasts of Belarus with high and low levels of radionuclide contamination (Lazjuk et al., 1999).
We will focus on childhood thyroid cancer, examining respectively data from heavily contaminated regions and those from Western Europe.
Thyroid cancer and ionizing radiation: data before Chernobyl.

- The follow-up of survivors of atomic bombs has established that thyroid exposure during childhood increases the risk of thyroid cancer. No increase is clearly apparent below a radiation dose of 0.1 Gy.

Intervention levels for administration of stable iodine

• Before the Chernobyl accident, most countries would consider administration of stable iodine if internal thyroid radiation is expected to exceed 100 mGy (avertable dose).
Excess risk for thyroid cancer in atomic bomb survivors

<table>
<thead>
<tr>
<th>Age at exposure (years)</th>
<th>Excess Relative Risk (per Sv)</th>
<th>Excess Absolute Risk (per 10,000 PY Sv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 10</td>
<td>~ 9.5</td>
<td>~ 4.4</td>
</tr>
<tr>
<td>10-19</td>
<td>~ 3</td>
<td>~ 2.7</td>
</tr>
<tr>
<td>> 20</td>
<td>~ 0.1*</td>
<td>~ 0.2</td>
</tr>
</tbody>
</table>

Data adapted from Thompson et al.
Thyroid cancer in those exposed as children

A sharp increase in childhood thyroid cancer started four years after the accident.

In the years 1993-1997, the incidence of childhood thyroid cancer in areas of Gomel, south Belarus, were about one hundred times higher than usual incidence for this disease in children.
Why the thyroid gland?

• The huge release of iodine radioisotopes, and the ability of the thyroid to avidly concentrate iodine as part of its normal metabolism, make the thyroid the critical organ.

• Doses received by the thyroid gland are about one to two orders of magnitude higher than those received by other organs.
Why children?

• The thyroid of children is much more vulnerable to radiation. Vulnerability is highest in the younger age groups.

• Moreover, radiation doses to the thyroid (energy deposit per unit organ mass) were several times higher in children than in adults, and were highest in the younger age groups. (High iodine intake combined with small organ mass).

• Thus, in any region, the cohort of children aged less than 5 years at the time of the accident is the one most at risk.

Figure XXVI. Number of diagnosed thyroid cancer cases in Belarus as a result of the Chernobyl accident [K41].
Comparison of thyroid doses in heavily contaminated areas of Belarus and Ukraine and those in Western Europe.
Thyroid doses in heavily contaminated areas.

- Thyroid contamination occurred through several routes. During the first days, inhalation, and ingestion of contaminated water and raw vegetables, were the major sources. Later, ingestion of contaminated milk became predominant.

- Many uncertainties limit the accuracy of thyroid dose estimates. The respective importance of short-lived isotopes (133-I; 132-Te/132-I) and 131-I is also difficult to assess.

- The contribution of short-lived isotopes should have been maximal in evacuees, in whom it may have exceeded that of 131-I. In contrast, when contamination resulted from ingestion of cow milk, the contribution of short-lived isotopes would have been small.
Thyroid doses in Belarus and Ukraine.

- Thyroid doses were not uniform. In Belarus, more than half the collective thyroid dose resulted from exposure in the Gomel region. In Ukraine, a large part of the collective thyroid dose resulted from exposure in eight districts located around the Chernobyl reactor.

- Based on 27,000 measurements sampled from the contaminated districts of the Gomel region of Belarus, 30% of those aged less than 4 had received a thyroid dose higher than 2 Gy (2000 mGy).

- Similarly, in Ukraine, the average thyroid dose for children aged less than 4 from the evacuated 30-km zone (Pripyat city, and other settlements) exceeds 2 Gy.
Estimates of collective thyroid doses to populations of Belarus

<table>
<thead>
<tr>
<th>Country/region</th>
<th>Population</th>
<th>Collective thyroid dose (man GY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belarus [D1, G7]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brest</td>
<td>1,400,000</td>
<td>101,000</td>
</tr>
<tr>
<td>Gomel</td>
<td>1,700,000</td>
<td>301,000</td>
</tr>
<tr>
<td>Grodno</td>
<td>1,200,000</td>
<td>49,000</td>
</tr>
<tr>
<td>Minsk</td>
<td>3,200,000</td>
<td>68,000</td>
</tr>
<tr>
<td>Mogilev</td>
<td>1,300,000</td>
<td>32,000</td>
</tr>
<tr>
<td>Vitebsk</td>
<td>1,400,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Entire country</td>
<td>10,000,000</td>
<td>553,000</td>
</tr>
</tbody>
</table>
Table 22
Estimates of thyroid doses from intake of 131I received by the evacuees of Belarusian villages

<table>
<thead>
<tr>
<th>Age at time of accidenta (years)</th>
<th>Number of measured persons</th>
<th>Arithmetic mean thyroid dose (Gy)</th>
<th>Median thyroid dose (Gy)</th>
<th>Estimated number of residentsb</th>
<th>Collective thyroid dose (man Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>145</td>
<td>4.3</td>
<td>2.3</td>
<td>586</td>
<td>2 519</td>
</tr>
<tr>
<td>1-3</td>
<td>290</td>
<td>3.7</td>
<td>1.7</td>
<td>966</td>
<td>3 573</td>
</tr>
<tr>
<td>4-7</td>
<td>432</td>
<td>2.1</td>
<td>1.2</td>
<td>1 199</td>
<td>2 517</td>
</tr>
<tr>
<td>8-11</td>
<td>460</td>
<td>1.4</td>
<td>0.86</td>
<td>1 105</td>
<td>1 548</td>
</tr>
<tr>
<td>12-15</td>
<td>595</td>
<td>1.1</td>
<td>0.61</td>
<td>1 392</td>
<td>1 531</td>
</tr>
<tr>
<td>16-17</td>
<td>221</td>
<td>1.0</td>
<td>0.59</td>
<td>704</td>
<td>704</td>
</tr>
<tr>
<td>>17</td>
<td>7 332</td>
<td>0.68</td>
<td>0.38</td>
<td>18 773</td>
<td>12 766</td>
</tr>
<tr>
<td>Total</td>
<td>9 475</td>
<td></td>
<td></td>
<td>24 725</td>
<td>25 158</td>
</tr>
</tbody>
</table>

a Derived from information on year of birth; e.g. age <1 includes children born in 1986 and 1985.

b Based on the age distribution available for 17,513 evacuees.
Table 21
Estimates of thyroid doses from intake of 131I received by the Ukrainian evacuees of towns and villages within the 30-km zone
[G8, R12]

<table>
<thead>
<tr>
<th>Age at time of accident (years)</th>
<th>Pripyat town [G8]</th>
<th>Chernobyl town a</th>
<th>Evacuated villages a</th>
<th>Total collective dose (man Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of persons</td>
<td>Arithmetric mean dose (Gy)</td>
<td>Collective dose (man Gy)</td>
<td>Number of persons</td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>2.18</td>
<td>741</td>
<td>219</td>
</tr>
<tr>
<td><1</td>
<td>2 030</td>
<td>1.28</td>
<td>2 698</td>
<td>653</td>
</tr>
<tr>
<td>1-3</td>
<td>2 710</td>
<td>0.54</td>
<td>1 463</td>
<td>894</td>
</tr>
<tr>
<td>4-7</td>
<td>2 710</td>
<td>0.23</td>
<td>623</td>
<td>841</td>
</tr>
<tr>
<td>8-11</td>
<td>2 710</td>
<td>0.12</td>
<td>325</td>
<td>846</td>
</tr>
<tr>
<td>12-15</td>
<td>2 710</td>
<td>0.066</td>
<td>140</td>
<td>650</td>
</tr>
<tr>
<td>16-18</td>
<td>2 120</td>
<td>0.096</td>
<td>2 425</td>
<td>9 488</td>
</tr>
<tr>
<td>>18</td>
<td>36 740</td>
<td>0.066</td>
<td>13 391</td>
<td>3 206</td>
</tr>
</tbody>
</table>

a Assumes same age distribution of population as Pripyat.
Thyroid doses in Western Europe.

• In Western Europe, contamination with iodine-131 occurred mainly through ingestion of contaminated milk, and raw vegetables. The contribution of short-lived isotopes is negligible.

• Some products considered to have a radioactive burden higher than a "safety threshold" were not approved for sale by local authorities.

• Thyroid doses are not always correlated with the level of radioactive deposit. They also depended on whether cows were on pasture, on dietary habits, and on the avidity of the thyroid for iodine, being higher in countries with low iodine in diet.
Figure XV. Country-wide average infant thyroid dose equivalents from the Chernobyl accident.
Thyroid doses in Western Europe.

- Estimates of thyroid absorbed doses to infants vary from one country to another and in different regions, from less than 0.1 mGy in Portugal and Spain to about 6 mGy in the south of Germany, and up to 30 mGy in the north of Greece.

- Even in the most affected regions, infant thyroid doses in Western Europe are one hundred times lower than those received by inhabitants of south Belarus and northern Ukraine.

- Adult thyroid doses were lower than infant doses by a factor of 5.
Childhood thyroid cancer in the heavily contaminated territories.

• Usual incidence rates of childhood thyroid cancer in Europe range between 0.4 and 1.5 cases per million.

• During the period 1993-1997, incidence rates of childhood thyroid cancer (under 15 years at diagnosis) in Belarus averaged 53 cases per million per year.

• As expected, the increase was not uniform. Incidence rates were as high as 150 in the Gomel region, while in the region of Vitebsk, they were close to natural incidence.
Table 57
Thyroid cancer incidence rates in children under 15 years old at diagnosis

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brest</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>3.3</td>
<td>2.9</td>
<td>3.7</td>
<td>11.6</td>
<td>8.1</td>
<td>8.8</td>
<td>7.3</td>
<td>8.2</td>
<td>8.0</td>
</tr>
<tr>
<td>Vitebsk</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5</td>
<td>1.4</td>
<td>1.4</td>
<td>-</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
</tr>
<tr>
<td>Gomel</td>
<td>0.4</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>5.6</td>
<td>15.0</td>
<td>11.2</td>
<td>13.9</td>
<td>15.9</td>
<td>17.9</td>
<td>16.9</td>
<td>16.0</td>
<td>7.1</td>
</tr>
<tr>
<td>Grodno</td>
<td>1.1</td>
<td>0.6</td>
<td>0.5</td>
<td>1.1</td>
<td>0.6</td>
<td>2.2</td>
<td>3.2</td>
<td>2.7</td>
<td>2.2</td>
<td>2.8</td>
<td>2.4</td>
<td>3.1</td>
<td>3.3</td>
</tr>
<tr>
<td>Minsk city</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
<td>1.5</td>
<td>1.9</td>
<td>2.7</td>
<td>3.5</td>
<td>1.2</td>
<td>3.9</td>
<td>0.5</td>
<td>2.0</td>
<td>3.7</td>
</tr>
<tr>
<td>Minsk</td>
<td>-</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>-</td>
<td>1.7</td>
<td>3.2</td>
<td>2.0</td>
<td>3.0</td>
<td>0.9</td>
<td>2.8</td>
<td>3.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Mogilev</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>3.2</td>
<td>2.2</td>
<td>2.9</td>
<td>1.8</td>
<td>2.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Total</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>1.9</td>
<td>3.9</td>
<td>3.9</td>
<td>5.5</td>
<td>5.1</td>
<td>5.6</td>
<td>4.8</td>
<td>5.6</td>
<td>3.9</td>
</tr>
</tbody>
</table>
Thyroid cancer in those exposed as children in the heavily contaminated territories.

- Increased incidence of thyroid cancer continues to be observed as the population exposed as children aged into adolescence and now adulthood.

- Between 1992-2000 in Belarus, Russia, and Ukraine about 4000 cases of thyroid cancer were diagnosed among those who were children and adolescents (0-18 years) at the time of the accident (Chernobyl Forum).

- Not all these cases are due to radiation.

- With the aging of the cohort, carefully controlled epidemiological studies will be required to estimate the excess cancer risk, as the natural incidence increases with age and as screening can strongly influence the results.

Thyroid cancer in Western Europe before and after Chernobyl.

- Even if the thyroid radiation was quite low, millions of young children in Western European countries have been exposed to these low levels of contamination. Patients with a new diagnosis of thyroid cancer may ask about a possible link with the accident.

- In order to detect a specific increase in thyroid cancer one should focus on age groups who are most at risk (i.e. children, and especially so those exposed below 5 years).

- When an increase in thyroid cancer occurs during childhood or adolescence it would be easy to differentiate (low natural incidence).

- Studies focusing on adults in Western Europe are not justified. Thyroid doses received by adults were very low, the adult thyroid is much less sensitive to radiation, and the extreme effects of screening on the incidence of thyroid cancer in adults renders any search for a small increase elusive.
Thyroid cancer in Western Europe before and after Chernobyl.

- Studies were initiated in several countries of eastern and southern Europe, outside the former USSR.

- An International Union against Cancer (UICC) review collated results from studies in Greece, Croatia, Turkey, and Poland and was reported by Sali et al, in 1996.

- The authors conclude to no increase in incidence attributable to radiation from Chernobyl.

- However, the duration of follow-up in most studies was less than 7 years, and most of them did not focus on the childhood population.
<table>
<thead>
<tr>
<th>Country</th>
<th>Study region</th>
<th>Age group</th>
<th>Average absorbed dose (mGy) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croatia</td>
<td>Whole country</td>
<td>All ages</td>
<td>15 b</td>
</tr>
<tr>
<td>Greece</td>
<td>Whole country</td>
<td>20-60 years</td>
<td>5</td>
</tr>
<tr>
<td>Hungary</td>
<td>Whole country</td>
<td>All ages</td>
<td>3 b</td>
</tr>
<tr>
<td>Poland</td>
<td>Krakow, Nowy Sacz</td>
<td>All ages</td>
<td>4 b</td>
</tr>
<tr>
<td>Turkey</td>
<td>Five most affected areas on Black Sea coast and Edirne province</td>
<td>All ages</td>
<td>1.5 b</td>
</tr>
</tbody>
</table>
Several more reports were recently published

- One study from England
- One study from France
- One study from Italy
- One study from Austria
The study from England

• Cotterill et al, reported on an increase in childhood thyroid cancer in the North of England.
 Cotterill SJ, Pearce MS, Parker L.

• The authors noted that 4 cases have been diagnosed in the period 1987-1997, while only 3 cases were registered in the period 1968-1986.

• The comparison stands on very small numbers.

• Moreover, two of the four cases occurred in the period 1987-1990, where no increase is expected.

• The incidence was actually lower in 1991-1997 (2 cases) than in 1987-1990 (2 cases).
The study from France

• In France, cases of childhood thyroid cancer (under 15 years) are registered in pediatric, or specialized cancer registers.

• The incidence studied by age and by period show no significant change with time that could be related to the Chernobyl accident.

• Incidence rates were lower in the years 1993-1997 (0.79 per million) than in the years 1987-1992 (1.06 per million).

Evolution of the incidence of childhood thyroid cancer in France by period

Incidence per million (number of cases)

<table>
<thead>
<tr>
<th>Age at discovery (years)</th>
<th>Years 87-92</th>
<th>Years 93-97</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>0.0 (0)</td>
<td>0.15 (1)</td>
</tr>
<tr>
<td>5-9</td>
<td>0.96 (8)</td>
<td>0.55 (4)</td>
</tr>
<tr>
<td>10-14</td>
<td>2.23 (18)</td>
<td>1.62 (12)</td>
</tr>
<tr>
<td>Total</td>
<td>1.06 (26)</td>
<td>0.79 (17)</td>
</tr>
</tbody>
</table>

With the permission of B Lacour « Registre des Tumeurs Solides de l'Enfant ».
The study from Italy

- In total, 1% had palpable thyroid nodules. Based on ultrasound findings, ten of the palpable nodules were submitted to further investigation.

- All proved benign.

- The authors conclude that the high costs of their study, in relation to the finding of no increase in thyroid disease indicate that further population studies in areas that received only low radiation after Chernobyl are not justified.

The study from Austria

- Gomez Segovia et al, reported data from Carinthia, a region of Austria where thyroid doses may have been higher than average Europe, based on somewhat higher contamination, and also because relative iodine deficiency was prevailing at the time of the accident.

- The authors do not comment specifically on childhood thyroid cancer.

- However, from the figures presented, the incidence of thyroid cancer in children and adolescents (0-20 years) during the period 1990-2001 appears to be normal.

- The incidence was less than 1 case per million per year for boys, and less than 2 cases per million per year for girls. Thus, as of 2001, the specific cohort most at risk, (age <5 at the time of the accident), has shown no increase.

Thyroid cancer in Western Europe after Chernobyl “preliminary conclusions”.

- Infant thyroid doses in Western Europe generally ranged from 1 to 30 mGy.

- From follow-up of atomic-bomb survivors, there is no evidence that irradiation at levels below 100 mGy leads to an increase in thyroid cancer.

- So far published data do not point to a specific increase in childhood thyroid cancer in Western Europe, that could be linked to the Chernobyl accident.

- It is unlikely that follow-up beyond this age provides useful information, due to extreme effects of screening on the incidence of thyroid cancer in adults.

- It is my opinion that predictions through formulae of an excess number of thyroid cancer cases, and number of thyroid cancer deaths in Western Europe related to Chernobyl are not justified.
Lessons from the accident
Age at exposure

• The thyroid gland is known to be increasingly sensitive to external radiation with decreasing age.

• In the case of a power-plant accident, the importance of age is amplified, as the level of thyroid irradiation itself increases with decreasing age.

• Protecting children should be the priority.
Nutritional iodine deficiency

- Ukraine and Belarus are areas of iodine deficiency. Efforts at salt iodination slackened in the decade that preceded the accident.

- The relation between dietary iodine status and thyroid uptake of radioactive iodine is well known.

- The risk induced by iodine deficiency is probably not only due to the resulting higher thyroid uptake. Higher TSH levels, resulting from iodine deficiency, may act as an epigenetic factor, accelerating the onset of cancer.

- Many European countries have borderline or low iodine intake, and are thus at an increased risk in case of a nuclear accident. One mean of protection should be eradication of iodine deficiency.
Contribution of short-lived radioisotopes of iodine

- The role of short-lived radioisotopes deserves further investigation. Indeed, the respective responsibilities of 131-I and short-lived iodines have not yet been fully clarified.

Non-medical exposure to radioiodines and thyroid cancer.
Improving communication

• The diversity of local situations, dissenting opinions among experts, as well as political and psychological factors, made that the reactions of national authorities in various EU-Member countries have been extremely varied and uncoordinated, thereby leading to confusion among the public. This is clearly an area where European harmonization is needed.

• Many efforts has been made:
 – The Europen Commision established the “European Community Urgent Radiological Information System” (ECURIE) through which the EU Member states are required to promptly notify the Commission on radiological emergencies and provide all information relevant to minimizing the foreseen radiological consequences.
 – The AIEA developed the “International Nuclear Event Scale” (INES) to facilitate communication on the severity of nuclear accidents,
 – etc.
Establishing uniform intervention levels for administration of stable iodine

• The Chernobyl accident pointed to a necessity of a uniform legislation for food monitoring and established “safety thresholds” processing.

• Uniform European legislation should also be adopted considering the administration of stable iodine:
 – The level of contamination (the threshold) that should trigger the administration of stable iodine.
 – The proper timing and duration of such protection.
 – The amount to be given for each age group, including new-borns and pregnant women.
 – The daily amount to be given in case of repeated administration.
Thank you